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Abstract. We present a static (ELbc) and dynamic (DELbc) epistemic logic for
budget-constrained agents, in which an agent can obtain some information in
exchange for budget resources. ELbc extends a standard multi-agent epistemic
logic with expressions concerning agent’s budgets and formulas’ costs. DELbc

extends ELbc with dynamic modality “[?iA]ϕ” which reads as “ϕ holds after i’s
question whether a propositional formula A is true”. In this paper we provide
a sound and complete axiomatization for ELbc and DELbc and show that both
logics are decidable.
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1 Introduction

Dynamic epistemic logic [6,12,15] is a common way of describing agents’ knowledge
and informational changes. But nowadays, our intuition about the nature of agents’ rea-
soning and interaction tells us that both processes of operating with available knowledge
and obtaining a new one cannot always be effortless. This natural intuition demonstrates
that reasoning often becomes a resource consuming action. A lot of researchers of epis-
temic logic paid attention to this problem and found different approaches to formalis-
ing the idea of resource-bounded agents [10]. The wide range of existing approaches,
describing non-omniscient agents, consider resources as various cognitive limits.

Non-omniscience can be described through time- and memory-constrained agents
who do not necessarily know all the logical consequences of their knowledge. Some
papers model such constraints through so-called inferential actions, which require
agents to take explicit inference steps, spending available resources to deduce the log-
ical consequences of their knowledge [17]. Other papers extend the idea of a bounded
deliberation process with resource consuming inference actions by introducing percep-
tion [4] or rule-based models [14] and their effects on formation of agents’ beliefs.
The idea of resource-bounded agents, situated in agent-environment systems that takes
into account agents’ observations, beliefs, goals and actions, sounds promising both
for philosophers and computer scientists [2]. Most contemporary papers on resource-
bounded reasoning would agree that modelling of non-omniscient agents does not mean
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modelling of imperfect reasoners. On the contrary, a lot of papers argue that epistemic
logic must formalise the idea that if the agent knows all necessary premises and either
thinks hard enough [8] or has enough time [1,3], then they will know the conclusion.
Thus, the reasoning process itself can justifiably be considered as an ongoing time-
consuming [13], as well as a memory-consuming [9] process. This intuition bridges the
gap between reasoning and computation process and sounds fruitful for AI research.
While this is a reasonable assumption which is worth studying, both time- and memory-
based approaches deal with’inner’ obstacles of an agent’s deliberation process. Thus,
even existing papers studying resource constraints in agent-environment settings con-
sider resources as a tool of reasoning or obtaining new information from already avail-
able agent’s knowledge. At the same time, a lot of real-life scenarios demonstrate that
resources can also be considered as an instrument of obtaining new, independent or
already available, information from the outside. In other words, solving some tasks can
require getting additional information, which is not necessarily costless. Our main goal
in this paper is to consider logically omniscient reasoners who can interact with the
environment (in the sense of an independent bystander) and obtain new information
from this environment by spending a certain amount of resources.

A similar attempt was made by Naumov and Tao [16]. Their paper describes budget-
constrained agents in epistemic settings. It catches the intuition that sometimes agents
have to spend their resources to obtain the knowledge of some fact. But since their
logic is static and describes resource constraints as a feature of the knowledge operator
itself, this approach violates the Negative Introspection axiom, so it appears to be a
S4-like system. Nevertheless, this S4-like epistemic logic is complete, with respect to
S5-like structures. Our paper aims to demonstrate that reasoning about knowledge and
informational change under budget constraints can be described by an S5-like system if
we consider this informational change explicitly in DEL-style language.

We assume that agents can purchase information, spending some resources avail-
able to them. Intuitively, agents can ask a question “is A true?” and get a positive or
negative answer. Sometimes, this question can require some resources (e.g. money).
The first example that comes to mind these days obviously involves COVID-19. We
can easily imagine that Agent A can be COVID-positive without knowing about it. It
is also clear that Agent A can get this information by medical testing, which usually
requires some amount of money, say $20. In this situation, Agent A can buy an answer
to the question ‘Am I infected?’ if her budget exceeds $20. To introduce the multi-agent
dimension in this example, let’s assume that Agent A is a professor at some university,
U . Nowadays it is common practice that professors are asked to work remotely. Imag-
ine that our university, U can relax these restrictions and allow working on campus
for those professors (agents) who can provide a negative COVID-test. It is also easy to
imagine that a university can have a list of all professors who took a test (for example,
this university can be in cooperation with some medical organisation). But the results of
these tests are available to professors only, due to the medical privacy. Thus, if Agent A
decides to take a test, she definitely obtains the result. At the same time U (1) does not
know if A is infected, but it also knows that (2) ‘A knows she is infected or A knows
she is not infected’. But since this action requires $20, U also knows that (3) A had at
least $20 before testing, and if U knows that A had n1 or n2 (where n1, n2 ≥ 20), then
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(4) U knows that A has $(n1 − 20) or $(n2 − 20) now. We hope that this example is
clear and represents useful intuitions about resource-consuming informational updates
in a multi-agent setting. Thus, we intend to model situations in which agents can spend
resources in order to obtain an answer to some question. In our framework, the very fact
of the question is public. i.e. every agent knows that question is asked. But the answer
is private, so only one agent knows it. We also assume that resources can be understood
in some abstract way, similar to the idea of utility in economics. Thus, we can con-
sider money, effort or any other kind of agent’s utility as resources in our models. We
build our logic upon the standard S5 epistemic logic [12], enriched with linear inequal-
ities described in [11] to deal with costs of the formulas and agents’ budget. Then, we
extend this logic with dynamic operator [?iA] combining ideas of public announcement
logic [6], contingency logic with arbitrary announcement [5] and some intuitions about
semi-private announcements. Section 2 of this paper deals with static epistemic logic for
reasoning about costs of formulas and agent’s budget. We demonstrate that this logic is
sound and complete. Section 3 provides a dynamic extension of static fragment which
allows us to reason about informational change for budget-constrained agents. We also
state a soundness and completeness result for dynamic fragment via standard reduction
argument and prove that both ELbc and DELbc are decidable.

2 Epistemic Logic for Budget-Constrained Agents

Here we present the syntax and semantics of the epistemic logic for budget-constrained
agents ELbc. In Sect. 3 we extend it with the dynamic operators for model updates.

2.1 Syntax

Let Prop = {p, q, . . . } be a countable set of propositional letters. Denote by LPL the
set of all propositional (non-modal) formulas defined by the following grammar (where
p ranges over Prop, other connectives are defined standardly):

A,B ::= p | ¬A | (A ∧ B).

Definition 1 (The language ELbc). Let Agt = {i, j, . . . } be a finite set of agents. We
fix a set of constants Const = {cA | A ∈ LPL} ∪ {bi | i ∈ Agt}. It contains a constant
cA for the cost of each propositional formula A and a constant bi for the budget of each
agent i. Formulas of the language ELbc are defined by the following grammar:

ϕ,ψ ::= p | (z1t1 + . . . + zntn) ≥ z | ¬ϕ | (ϕ ∧ ψ) | Kiϕ,

where p ranges over Prop, i ∈ Agt, t1, . . . , tn ∈ Const and z1, . . . , zn, z ∈ Z.

Other Boolean connectives →,∨,↔,⊥ and 
 are defined in the standard way. The
dual operator for Ki is defined as K̂iϕ := ¬Ki¬ϕ. We will also use K?

i ϕ as an abbrevi-
ation for (Kiϕ ∨ Ki¬ϕ). Note that we introduce the cost cA only for propositional for-
mulas A ∈ LPL. The logic with costs of arbitrary epistemic formulas is left for future
research. We deal with linear inequalities and use the same abbreviations as in [11].
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Thus, we write t1 − t2 ≥ z for t1 + (−1)t2 ≥ z, t1 ≥ t2 for t1 − t2 ≥ 0, t1 ≤ z for
−t1 ≥ −z, t1 < z for ¬(t1 ≥ z), and t1 = z for (t1 ≥ z) ∧ (t1 ≤ z). Thus, the lan-
guage ELbc allows us to express statements such as: “cp∧q ≥ 7”, “bi ≥ 5”, “2bi = bj”,
“Kc(bi + bj ≥ cp∨q)” etc.

The set of subformulas Sub(ϕ) of a formula ϕ is defined in the standard way; note
that if a constant cA occurs in ϕ then we do not count A as a subformula of ϕ.

2.2 Semantics

A model M of the logic ELbc has the components standard for the multi-modal logic
S5, namely, a non-empty set of states W , an epistemic accessibility relation ∼i for
each agent i ∈ Agt, and a valuation V : Prop → 2W . Besides, a model M contains
a function Cost that assigns to every propositional formula at each state its cost, and
a function Bdg that assigns to each agent i ∈ Agt at each state w ∈ W the available
amount of resources.

Definition 2 (Kripke-style semantics). A model is a tuple M = (W, (∼i

)i∈Agt,Cost,Bdg, V ), where

– W is a non-empty set of states,
– ∼i ⊆ (W × W ) is an equivalence relation for each i ∈ Agt,
– Cost : W × LPL −→ R

+ is the (non-negative) cost of propositional formulas,
– Bdg : Agt × W −→ R

+ is the (non-negative) bugdet of each agent at each state,
– V : Prop → 2W is a valuation of propositional variables.

Thus both the cost of a formula and the budget of an agent depend on a current state. We
use Bdgi(w) as an abbreviation for Bdg(i, w), where i ∈ Agt and w ∈ W . In order to
formulate additional constraints on the function Cost, we need the following notation.
Let PL be the classical propositional logic. For any propositional formulas A and B:

– A and B are called equivalent: A ≡ B iff �PL A ↔ B,
– A and B are called similar: A ≈ B iff A ≡ B or A ≡ ¬B.

We also impose the following conditions on the function Cost:

(C1) Cost(w,⊥) = Cost(w,
) = 0,
(C2) A ≈ B implies Cost(w,A) = Cost(w,B), for all A,B ∈ LPL and all w ∈ W .

Definition 3. The truth � of a formula A at a state w ∈ W of a model M is defined by
induction:

M, w � p iff w ∈ V (p),
M, w � ¬ϕ iff M, w � ϕ,
M, w � ϕ ∧ ψ iff M, w � ϕ and M, w � ψ,
M, w � Kiϕ iff ∀w′ ∈ W : w ∼i w′ ⇒ M, w′ � ϕ,
M, w � (z1t1 + · · · + zntn) ≥ z iff (z1t′1 + · · · + znt′n) ≥ z, where for 1 ≤ k ≤ n,

t′k =

{
Cost(w,A), for tk = cA,

Bdgi(w), for tk = bi.

We refer to the class of all models satisfying all properties mentioned above as M.
We write �M ϕ if the formula ϕ is valid in the class of models M.
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2.3 Soundness and Completeness

The axiomatisation of the logic ELbc is presented in Table 1. Here, (Ineq) is the set of
axioms for linear inequalities firstly described in [11] and used later for similar purposes
in [17].

Table 1. Proof system for ELbc

Axioms

(Taut) All instances of propositional tautologies

(Ineq) All instances of the axioms for linear inequalities

(K) Ki(ϕ → ψ) → (Kiϕ → Kiψ)

(T) Kiϕ → ϕ

(4) Kiϕ → KiKiϕ

(5) ¬Kiϕ → Ki¬Kiϕ

(Bd) bi ≥ 0

(≥1) cA ≥ 0

(≥2) c� = 0

(≥3) cA = cB if A ≈ B, for all formulas A, B ∈ LPL

Inference rules

(MP) From ϕ and ϕ → ψ, infer ψ

(Neci) From ϕ infer Kiϕ

Axioms (Ineq) allow us to prove all valid formulas about linear inequalities. These
axioms are presented in Table 2.

Table 2. Axioms for reasoning about linear inequalities

(I1) (a1t1+· · ·+aktk ≥ c) ↔ (a1t1+· · ·+aktk+0tk+1) ≥ c)

(I2) (a1t1 + · · · + aktk ≥ c) → (aj1 tj1 + · · · + ajk tjk ≥ c),
where j1, . . . , jk is a permutation of 1, . . . , k

(I3) (a1t1 + · · · + aktk ≥ c) ∧ (a′
1t1 + · · · + a′

ktk ≥ c′) →
→ (a1 + a′

1)t1 + · · · + (ak + a′
k)tk ≥ (c + c′)

(I4) (a1t1 + · · · + aktk ≥ c) ↔ (da1t1 + · · · + daktk ≥ dc)
for d > 0

(I5) (t ≥ c) ∨ (t ≤ c)

(I6) (t ≥ c) → (t > d), where c > d

Theorem 1 (Soundness). ELbc is sound w.r.t.M, i.e., �ELbc
ϕ ⇒ �M ϕ.

Proof. Straightforward.
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For the completeness proof, fix an ELbc-consistent formula ϕ. We start with the set
Γ = Sub(ϕ) of all subformulas of ϕ. Next, let Γ+ ⊇ Γ be the smallest set of formulas
such that

1. Γ+ is closed under single negation: if ψ ∈ Γ+ and ψ does not start with ¬, then
¬ψ ∈ Γ+,

2. (bi ≥ 0) ∈ Γ+, for each agent i ∈ Agt that occurs in Γ (in bi or Ki),
3. (cA ≥ 0) ∈ Γ+, for each constant cA that occurs in Γ ,
4. (c� = 0) ∈ Γ+,
5. cA = cB ∈ Γ+ for all constants cA and cB occurring in Γ such that A ≈ B.

First, we build a finite canonical pre-model Mc = (W c, (∼c
i )i∈Agt, V

c) by the
construction similar to that used for the multi-agent logic S5:

– W c is the set of all maximal ELbc-consistent subsets of Γ+;
– x ∼c

i y iff, for all formulas ψ ∈ Γ+, we have Kiψ ∈ x iff Kiψ ∈ y;
– w ∈ V c(p) iff p ∈ w, for each propositional variable p ∈ Γ .

So far, Mc is a Kripke model, without the Costc and Bdgc functions. Thus it
remains to prove that both functions Costc and Bdgc can be defined.

Since every state w ∈ W c is ELbc-consistent, the set of all linear inequalities
contained in w is satisfiable, i.e., has at least one solution. Then we can easily con-
struct functions Costc(A,w) and Bdgc

i (w) that agree with this solution: for formulas
A ∈ LPL such that cA occurs in Γ+, we put Costc(A,w) to be the real that corre-
sponds to cA in that solution; for other formulas B ∈ LPL, if B ≈ A for some formula
A such that cA is in Γ , then we put Costc(B,w) := Costc(A,w). Thus we can enforce
that for all w ∈ W c and all A ∈ LPL such that cA occurs in Γ+ it holds that

(1) Costc(A,w) ≥ 0 for all formulas A ∈ LPL such that cA occurs in Γ+, by the
construction of Γ+ and (≥1) axiom,

(2) Costc(
, w) = 0, by the construction of Γ+ and (≥2) axiom,
(3) Costc(A,w) = Costc(B,w) for all A,B ∈ LPL such that A ≈ B, by (≥3) axiom.

Similarly, we construct Bdgc function such that for each w ∈ W c and each i ∈
Agt, Bdgc

i (w) agrees with existing solution of linear inequalities, contained in w. This
construction is well-defined and for any w ∈ W c and any i ∈ Agt, it holds that

(1) Bdgc
i (w) ≥ 0 by axiom (Bd) and the construction of Γ+,

(2) Bdgc
i (w) ≥ Cost∗(A) iff (bi ≥ cA) ∈ w, for all bi, cA in Γ .

Thus, we obtained a finite canonical model Mc = (W c, (∼c
i )i∈Agt,Cost

c,
Bdgc, V c). As we have already demonstrated, this model satisfies the properties (C1)
and (C2). It is also clear that for all i ∈ Agt, ∼c

i is an equivalence relation on W c.

Lemma 1 (Truth Lemma). For any ψ ∈ Γ+, we have: Mc, w � ψ ⇐⇒ ψ ∈ w.

Proof. Induction on ψ. Cases for p ∈ Prop and Boolean connectives are trivial.

Case Kiψ:
Mc, w � Kiψ iff ∀w′ : w ∼c

i w′ ⇒ M c, w′ � ψ by Definition 3. ∀w′ : w ∼c
i w′ ⇒
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M c, w′ � ψ iff ∀w′ : w ∼c
i w′ ⇒ ψ ∈ w′ by previous induction step. ∀w′ : w ∼c

i

w′ ⇒ ψ ∈ w′ iff Kiψ ∈ w by the construction of ∼c
i .

Case (z1t1 + · · · + zntn) ≥ z:
Mc, w � (z1t1 + · · · + zntn) ≥ z iff (z1t′1 + · · · + znt′n) ≥ z, where t′1, . . . , t

′
n are

represented by Costc(A) and Bdgc
i (w) for the corresponding constants cA and bi that

occur in (z1t1 + · · · + zntn) ≥ z. By the construction of Costc and Bdgc, it also holds
that (z1t′1 + · · · + znt′n) ≥ z iff (z1t1 + · · · + zntn) ≥ z ∈ w.

Theorem 2 (Completeness). ELbc is complete w.r.t.M, i.e., �M ϕ iff �ELbc
ϕ.

Proof. The right-to-left direction follows from Theorem 1. For the left-to-right direc-
tion, consider a formula ϕ such that �ELbc

ϕ. Construct a model Mc for ¬ϕ. From
Lemma 1 it is clear that ∃w ∈ W c such that Mc, w � ¬ϕ. Then Mc, w � ϕ. It is also
clear that Mc ∈ M, by the construction of Mc, so �M ϕ.

Here we should also mention that in ELbc we intentionally impose as less semantic
restrictions as possible to deal with the most general case. In particular, we assume that
it is possible that an agent does not know her own budget. But this restriction can be
imposed by adding the following axiom to ELbc:

(bi = z) → Ki(bi = z) (Kb)

Let MKb be a subclass of M such that for any w1, w2 ∈ W : w1 ∼i w2 ⇒ Bdgi(w1) =
Bdgi(w2). Then it is straightworfard to prove the following result.

Theorem 3 (Completeness). The logic ELbc + Kb is complete with respect to MKb,
i.e., �MKb ϕ ⇔ �ELbc+Kb ϕ.

Note also that here we prove only weak completeness result due to non-compactness
of ELbc. To see that ELbc is non-compact consider a set of ELbc-formulas: {cA > n |
n ∈ N}. It is easy to see that any finite subset of this set is satisfiable while the set itself
is not.

Theorem 4 (Decidability). The satisfiability problem for ELbc is decidable.

Proof. In this proof we follow the technique similar to those from [7]. From the proof
of Theorem 2 it follows that a formula ϕ is satisfiable iff it is satisfiable in a model
M ∈ M with at most 2|Γ+| states. However, since these models include Cost and Bdg
functions there are infinitely many of them. In order to restrict the set of structures to
check to be finite, we will consider pseudo-models which do not have Cost and Bdg, but
it is easy to check whether a corresponding functions exist. We call pseudo-models for
which both Cost and Bdg exist solvable. The existence of one of such solvable pseudo-
models satisfying ϕ will guarantee the existence of a proper model (for which Cost and
Bdg are defined) that satisfies ϕ.

Consider a set Γ+ defined in the proof of Theorem 2 and let a set Sum(ϕ) be a set

of all elements of Γ+ of the form
n∑

k=1

zktk ≥ z. For every l ≤ 2|Γ+| we consider a
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pseudo-model M = (W,∼i, S, V ), where W,∼i and V are defined in a standard way
and S is defined as follows:

S : W × Sum(ϕ) −→ {true, false}.

Note that there are only finitely many pseudo-models for each l. They are not mod-
els of our logic, but we can check if an element of Γ+ holds in some states of this
pseudo-model using the �′ relation which is defined in a trivial way, except the case for

n∑
k=1

zktk ≥ z:

M, w �
n∑

k=1

zktk ≥ z iff S(w,
n∑

k=1

zktk ≥ z) = true.

We will consider only those pseudo-models M such that M, w �′ ϕ for some
w ∈ W . For each such M we want to check whether M can be extended to a structure
M ∈ M of our logic. In other words, we want to check if S can be replaced by a
tuple (Cost,Bdg) that agrees with S and for every w ∈ W and every ψ ∈ Sum(ϕ) we
have M, w � ψ iff S(w,ψ) = true. It is straightforward to check that for such M it
holds that M, w � χ iff M, w �′ χ for every χ ∈ Γ+(ϕ). For this purpose we consider
special system of linear inequalities to define Cost(A,w) and Bdgi(w) for each i ∈ Agt
and each w ∈ W . We use the variables of the form cχ,w and bi,w which represent the
values of Cost(χ,w) and Bdgi(w) respectively. Now we are ready to define a system
of linear inequalities:

(1) cχ,w ≥ 0 for each χ ∈ LPL ∩ Γ+ and w ∈ W ,
(2) bi,w ≥ 0 for each i ∈ Agt and each w ∈ W ,
(3) c�,w = 0 for each w ∈ W ,
(4) cχ,w = cχ′,w for each w ∈ W , where χ, χ′ ∈ LPL ∩ Γ+ such that χ ≈ χ′,

(5)
n∑

k=1

zktk ≥ z, where each occurrence of cA and bi are replaced with cA,w and bi,w

for every formula
n∑

k=1

zktk ≥ z such that S(w,
n∑

k=1

zktk ≥ z) = true,

(6)
n∑

k=1

zktk < z, where each occurrence of cA and bi are replaced with cA,w and bi,w

for every formula
n∑

k=1

zktk ≥ z such that S(w,
n∑

k=1

zktk ≥ z) = false.

For our purposes it is sufficient to find at least one solution of such system of equa-
tions and inequalities. Note that this system is finite and the problem of solving systems
of inequalities is decidable. So, given a pseudo-model we can check if this pseudo-
model is solvable (by solving a corresponding system of inequalities). It is straightfor-
ward to see that if there is a solvable pseudo-model for ϕ, then ϕ is satisfiable.

The proof for other direction is trivial, since the canonical model for ϕ gives rise
to a solvable pseudo-model with 2|Γ+| states. Then if ϕ is satisfiable, then there is a
solvable pseudo-model for ϕ with l ≤ 2|Γ+| states.
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We have shown that ϕ is satisfiable iff there is a solvable pseudo-model for ϕ with
l ≤ 2|Γ+| states. So, we can check satisfiablity of ϕ examining finitely many choices of
l for which there are only finitely many pseudo-models and each pseudo-model can be
verified to be solvable in a finite number of steps.

3 Dynamic Epistemic Logic for Budget-Constrained Agents

The dynamic language DELbc extends the static language ELbc with a dynamic operator
[?iA]ϕ. A formula [?iA]ϕ can be read as “ϕ is true after i’s question whether A is true”.

3.1 Syntax

Definition 4. The formulas of DELbc are defined by the following grammar:

ϕ,ψ ::= p | (z1t1 + · · · + zntn) ≥ z) | ¬ϕ | (ϕ ∧ ψ) | Kiϕ | [?iA]ϕ,

where p ∈ Prop, A ∈ LPL, i ∈ Agt, t1, . . . , tn ∈ Const and z1, . . . , zn, z ∈ Z.

The dual operator 〈?iA〉ϕ can be defined in a standard way: 〈?iA〉ϕ ≡ ¬[?iA]¬ϕ.

3.2 Semantics

The main features of the operator [?iA]ϕ are: (1) every agent knows that the question
was asked, i.e., the very fact of the question is public, (2) only the agent i knows the
answer, i.e., the answer is private, (3) the question requires the agent i to spend some
amount of resources. All of these features will be described formally in this section.

We extend the truth relation � introduced in Definition 3 to the dynamic operator
[?iA]ϕ as follows.

Definition 5. Given a model M = (W, (∼i)i∈Agt,Cost,Bdg, V ) and a state w ∈ W ,

M, w � [?iA]ϕ iff M, w � (bi ≥ cA) implies M?iA, w � ϕ.

Here M?iA is a model obtained from M by the update that corresponds to the
following action: “the agent i asked whether the propositional formula A is true and
spent for this the amount of resources Cost(A)”; the updated model is described in the
next definition. We will use notation: [A]M := {w ∈ W | M, w � A}.

Definition 6. Given a model M = (W, (∼i)i∈Agt,Cost,Bdg, V ), an updated model is
a tuple M?iA = (W ?iA, (∼?iA

j )j∈Agt,Cost
?iA,Bdg?iA, V ?iA), where

– W ?iA = {w ∈ W | M, w |= bi ≥ cA},

– ∼?iA
j = (W ?iA × W ?iA) ∩ ∼∗

j ,

where ∼∗
j =

{
∼j

⋂(
([A]M × [A]M)

⋃
([¬A]M × [¬A]M)

)
if j = i,

∼j otherwise,



Dynamic Epistemic Logic for Budget-Constrained Agents 65

– Cost?iA(B) = Cost(B), for all propositional formulas B,

– Bdg?iAj (w) =

{
Bdgj(w) − Cost(A,w), if j = i,

Bdgj(w), otherwise,
– V ?iA(p) = V (p) ∩ W ?iA.

Intuitively, the update [?iA]ϕ of model M firstly removes all states of M in which
agent i does not have a sufficient amount of resources to ask about A. This can be
justified by the fact that other agents do not necessarily know i’s budget, but when they
observe the fact that i actually asks about the truth of A, it no longer makes sense to
consider the states with (bi < cA) as possible ones. Secondly, when i asks “is A true?”,
she gets either “Yes” or “No” and we consider this fact to be known by all agents. Then,
after this update, the agent i necessarily distinguishes any two states of M that do not
agree on the valuation of A. But since the actual answer is available only to the agent i,
the epistemic relations of other agents remain the same, only taking into account that
some states have been removed. This update does not affect the costs of formulas and
budgets of all agents except i. Budget of i decreases by the cost of A after [?iA]. As
one can see, all of these assumptions sound quite natural.

Consider an example with two agents i and j. Let pi stand for’i is COVID-positive’
and pj stands for’j is COVID-positive’. Assume that the cost of the test is 20 resources
in all possible worlds (M � cpi

= 20 ∧ cpj
= 20). If we also assume that i decides to

make the test ([?ipi]), then the semantics of DELbc describes this situation as presented
in Fig. 1.

pi,pj
25,10

w1

pi,pj
20,10

w2

pi,pj
30,10

w3

pi,pj
15,20

w4

i, j

i, j

i, j

i, j [?ipi]
=⇒

pi,pj
5,10

w1

pi,pj
0,10

w2

pi,pj
10,10

w3

j

i, j

Fig. 1. Initial model M and updated model M?ipi

Note that an agent does not necessarily knows even her own budget. The following
formulas hold in w1:

– M, w1 � ¬Kipi

– M?ipi , w1 � Kipi

– M?ipi , w1 � ¬Kjpi

– M?ipi , w1 � KjK
?
i pi

– M, w1 � ¬Ki(bi ≥ 20)
– M?ipi , w1 � Ki(bi ≥ 0)
– M, w1 � ¬Kj(bj = 10)
– M?ipi , w1 � Kj(bj = 10).
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3.3 Some Valid Formulas

Here we present some examples of valid formulas w.r.t. the proposed semantics.

Proposition 1. � (bi ≥ cA) ↔ 〈?iA〉
.

Proof. M, w � 〈?iA〉
 is equivalent to M, w � ¬[?iA]⊥ by definition of 〈?iA〉.
Then M, w � ¬[?iA]⊥ is equivalent to M, w � (bi ≥ cA) and M?iA, w � 
. But
since w ∈ W ?iA iff M, w � (bi ≥ cA), then M?iA, w � 
 is also equivalent to
M, w � (bi ≥ cA).

Proposition 2. � 〈?iA〉ϕ → [?iA]ϕ.

Proof. As we mentioned above, M, w � 〈?iA〉ϕ is equivalent to M, w � (bi ≥ cA)
and M?iA, w � ϕ. This conjunction obviously implies that M, w � (bi ≥ cA) ⇒
M?iA, w � ϕ.

Proposition 3. � [?iA]K?
i A.

Proof. It is clear that w ∼?iA w′ implies (M, w � A and M, w′ � A) or (M, w � ¬A
and M, w′ � ¬A) by Definition 6. Then M, w � (bi ≥ cA) implies M?iA, w �
(KiA ∨ Ki¬A).

3.4 Soundness and Completeness

Axiomatization of DELbc can be obtained by adding the reduction axioms from Table 3

to the axiomatization of ELbc. The notation
(
(z1t1 + · · · + zntn) ≥ z)

)[bi\(bi−cA)]

means that all occurrences of bi in (z1t1+ · · ·+zntn) ≥ z are replaced with (bi − cA).

Table 3. Reduction axioms and inference rules

(Rp) [?iA]p ↔ (bi ≥ cA) → p

(R≥) [?iA]
(
(z1t1 + · · · + zntn) ≥ z)

) ↔ (bi ≥ cA) →
→ (

(z1t1 + · · · + zntn) ≥ z)
)[bi\(bi−cA)]

(R¬) [?iA]¬ϕ ↔ (bi ≥ cA) → ¬[?iA]ϕ

(R∧) [?iA](ϕ ∧ ψ) ↔ [?iA]ϕ ∧ [?iA]ψ

(RKj ) [?iA]Kjϕ ↔ (bi ≥ cA) → Kj [?iA]ϕ, where i 
= j

(RKi ) [?iA]Kiϕ ↔ (bi ≥ cA) →
→

((
A → Ki(A → [?iA]ϕ)

) ∧ (¬A → Ki(¬A →
[?iA]ϕ)

))

(Rep) From � ϕ ↔ ψ, infer � [?iA]ϕ ↔ [?iA]ψ

Proposition 4. Axioms (Rp), (R¬), and (R∧) and inference rule Rep are sound w.r.t.
M.
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Proof. Trivial.

Lemma 2. For i �= j is holds that w ∼?iA
j w′ iff w ∼j w′, M, w � (bi ≥ cA), and

M, w � (bi ≥ cA).

Proof. Follows straightforward from Definition 6.

Proposition 5. For any model M and any point w ∈ W , it holds that

M, w � [?iA]Kjϕ iff M, w � (bi ≥ cA) → Kj [?iA]ϕ, where i �= j.

Proof (⇒). Let M, w � [?iA]Kjϕ (1) and M, w � (bi ≥ cA) (2). From (1), M, w �
(bi ≥ cA) implies M?iA, w � Kjϕ (1.1) by Definition 5. Then M?iA, w � Kjϕ

from (1.1) and (2). Then ∀w′ : (w ∼?iA
j w′) ⇒ M?iA, w′ � ϕ by Definition 3.

This fact together with Lemma 2 implies that ∀w′(w ∼j w′): M, w′ � (bi ≥ cA)
⇒ M?iA, w′ � ϕ. This is equivalent to M, w � Kj [?iA]ϕ, by Definition 3 and
Definition 5.

(⇐). The case for M, w � (bi ≥ cA) is trivial. Consider only the case for M, w �
Kj [?iA]ϕ. Then ∀w′(w ∼j w′) : M, w′ � (bi ≥ cA) ⇒ M?iA, w′ � ϕ. By Lemma
2 it holds that ∀w′ : w ∼?iA

j w′ ⇒ M?iA, w′ � ϕ. By Definition 3, M?iA, w � Kjϕ
and hence M, w � [?iA]Kjϕ.

Lemma 3.

– w ∼?iA
i w′ iff w ∼i w′ (1), M, w � (bi ≥ cA) (2.1), M, w′ � (bi ≥ cA) (2.2) and

w ≈A w′ (3), where w ≈A w′ holds if either both M, w � A and M, w′ � A hold
or both M, w � ¬A and M, w′ � ¬A hold,

– M, w � A iff M?iA, w � A, where A is a propositional formula.

Proof. Follows straightforwardly from Definition 6.

Proposition 6. For any model M and any point w ∈ W , we have:

M, w � [?iA]Kiϕ iff M, w � (bi ≥ cA) →
∧

A′∈{A,¬A}

(
A′ → Ki(A′ → [?iA

′]ϕ)
)
.

Proof (⇒). Let M, w � [?iA]Kiϕ (1) and M, w � (bi ≥ cA) (2). From (1), (2)
and Definition 5 we get M?iA, w � Kiϕ. Then ∀w′(w ∼?iA

i w′) ⇒ M?iA, w′ � ϕ.
Assume that M, w � A. Then by Lemma 3 it follows that ∀w′ : w ∼i w′ and M, w′ �
A and M, w′ � (bi ≥ cA) implies M?iA, w′ � ϕ. This is equivalent to M, w �
Ki(A → [?iA]ϕ) by Definition 3 and Definition 5. Then, from our assumption we
proved that M, w � A → Ki(A → [?iA]ϕ). By a similar argument, one can show that
M, w � ¬A → Ki(¬A → [?iA]ϕ).

(⇐). The case for M, w � (bi ≥ cA) is trivial. Consider only the case for M, w �∧
A′∈{A,¬A}

(
A′ → Ki(A′ → [?iA

′]ϕ)
)
. Assume that M, w � A. Then M, w �

Ki(A → [?iA]ϕ). Similarly, assuming M, w � ¬A entails M, w � Ki(¬A →
[?iA]ϕ). Then for all w′, such that (w ∼i w′) and w′ agrees with w on the valuation of
A it holds that M, w′ � [?iA]ϕ and hence M, w′ � (bi ≥ cA) implies M?iA, w′ � ϕ.
Then by Lemma 3 it holds that ∀w′ : w ∼?iA

i w′ ⇒ M?iA, w′ � ϕ. And hence
M?iA, w � Kiϕ. By Definition 5, the last claim implies M, w � [?iA]Kiϕ.



68 V. Dolgorukov and M. Gladyshev

Proposition 7. Axiom (R≥) is sound w.r.t.M

Proof. It is clear that M, w � [?iA](z1t1 + · · · + zntn) ≥ z iff M, w � (bi ≥ cA)
implies M?iA, w � (z1t1 + · · · + zntn) ≥ z by Definition 5. Note that M?iA, w �
(z1t1+· · ·+zntn) ≥ z is equivalent to M, w � (z1t∗1+· · ·+znt∗n) ≥ z, where t∗k = tk
for tk = cA or tk = bj . And t∗k = tk + Cost(A) for tk = bi since Cost?iA(B) =
Cost(B), Bdg?iAj (w) = Bdgj(w) for i �= j and Bdg?iAi (w) = Bdgi(w) − Cost(A).
Then M, w � [?iA](z1t1 + · · · + zntn) ≥ z iff M, w � (bi ≥ cA) implies M, w �
[(z1t1 + · · · + zntn) ≥ z)][bi\(bi−cA)].

Theorem 5 (Soundness). DELbc is sound w.r.t.M, i.e. �DELbc
ϕ =⇒ �M ϕ.

Proof. Follows from Proposition 4–Proposition 7.

Theorem 6 (Completeness). DELbc is complete w.r.t.M, i.e. �DELbc
ϕ iff �M ϕ.

Proof. Left-to-right direction follows from Theorem 5. The other direction holds by
Theorem 2 and the standard for dynamic epistemic logic completeness via reduction
argument.

Theorem 7 (Decidability). The satisfiability problem for DELbc is decidable.

Proof. This result is straightforward since any DELbc formula can be translated into
ELbc formula in finitely many steps by the rules presented in Table 3 and the decidability
of ELbc is demonstrated in Theorem 4.

4 Combination of DELbc and PAL

The language DELbc! extends the language DELbc with a standard operator for public
announcement [!ϕ]. A formula [!ϕ]ψ stands for “after public announcement of ϕ, it
holds that ψ”.

Definition 7. The formulas of DELbc! are defined by the following grammar:

ϕ,ψ ::= p | (z1t1 + · · · + zntn) ≥ z) | ¬ϕ | (ϕ ∧ ψ) | Kiϕ | [?iA]ϕ, | [!ϕ]ψ

where p ∈ Prop, A ∈ LPL, i ∈ Agt, t1, . . . , tn ∈ Const and z1, . . . , zn, z ∈ Z.

Definition 8. M, w |= [!ϕ]ψ ⇐⇒ M, w |= ϕ ⇒ M!ϕ, w |= ψ, where M is defined
in Definition 2 and M!ϕ is a model M restricted to ϕ-worlds.

Rational Question. We will call the question rational if the agent doesn’t know the
answer to this question. We can express the condition for a rational question in DELbc!
as [?r

i A]ϕ := [!¬K?
i A][?iA]ϕ. A formula [?r

i A]ϕ can be read as “ϕ is true after i’s
rational question whether A is true”.
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Example [3 cards puzzle]. From a pack of three known cards X,Y,Z, Alice, Bob and
Cath each draw one card. Initially, all agents has zero points. If an agent has X or Y ,
then its score increases by one point. Also, from a pack of three known card 1, 0, 0 each
agent draws one card. If an agent has 1, then its score increases by one point, 0 does
not change anything. An agent may ask a question publicly and get an answer (yes or
no) privately. The cost of any question is 1 point. Bob asks: “Whether Cath has the card
Y ?”. Alice says “I know that my points and Bob’s points are different”. Cath says “I
know the cards”.

We can represent the initial situation with a Fig. 2. The sequence of updates can be
formalized as follows:

〈?r
bYc〉〈!Ka(ba �= bb)〉〈!Kc(XY Z)?〉


Here Ki(XY Z)? := K?
i X? ∧ K?

i Y? ∧ K?
i Z? and K?

i X? := K?
i Xa ∧ K?

i Xb ∧ K?
i Xc

(similarly for Y and Z). The results of updates are presented in Fig. 3. Hence, the only
one possible world satisfies this series of updates.

Y XZ
111

ZXY
012

XZY
102

Y ZX
102

XY Z
111

ZY X
012

Y XZ
120

ZXY
021

XZY
111

Y ZX
111

XY Z
120

ZY X
021

Y XZ
210

ZXY
111

XZY
201

Y ZX
201

XY Z
210

ZY X
111

b

a

c

b

a

c ca

b

a a

a a

a a

b

a

c

b

a

c ca

b

c c

c c

c c

b

a

c

b

a

c ca

b

b b

b b

b b

Fig. 2. Model for “3 cards” puzzle. Reflexivity, symmetry and transitivity are assumed.

Axiomatisation. The sound and complete axiomatisation for DELbc! can be obtained as
a combination of DELbc and PAL (see [18]) proof systems with an additional reduction
axiom: [!ϕ]((z1t1 + · · · + zntn) ≥ z) ↔ (ϕ → (z1t1 + · · · + zntn) ≥ z).
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?rbYc==

Y XZ
101

ZXY
002

Y XZ
110

ZXY
011

XZY
101

Y ZX
101

Y XZ
200

ZXY
101

c

a

a

a
ca

c c

b b

!Ka(ba=bb)=======

XZY
101

Y XZ
200

ZXY
101

c !Kc(XY Z)?=======
Y XZ
200

Fig. 3. Models for “3 cards” puzzle in a series of updates. Reflexivity, symmetry and transitivity
are assumed.

5 Discussion

In this paper, we present ELbc, a static epistemic logic for budget-constrained agents,
and provide its sound and complete axiomatisation. Then we present DELbc, a dynamic
epistemic logic for budget-constrained agents, which extends ELbc with dynamic opera-
tor [?iA]ϕ. For the dynamic fragment, we provide sound reduction axioms demonstrat-
ing DELbc completeness via a reduction argument. The proposed logics are sufficiently
expressive to deal with non-trivial epistemic scenarios involving reasoning about costs
of propositional formulas and agents’ budgets. In addition, DELbc is able to describe the
semantics of a special class of questions. These questions can be asked publicly, but the
answer is available only to the asking agent. Moreover, to get an answer, an agent must
spend some resources, thus decreasing her budget. This gives rise to a new direction of
research in the field of reasoning about resource-bounded agents in multi-agent systems
allowing to formalise not only inner or cognitive resources, but also external resources
as obstacles in the process of obtaining new information from the environment.

It is worth noting that we make some assumptions about the properties of Cost and
Bdg functions. Firstly, we assume that costs of formulas depend on a particular state of
a model, i.e. some formula can have different costs in different states. This assumption
allows us to model situations in which an agent does not necessarily know the cost of
some formula. Our second assumption is that agents do not necessarily know the budget
of other agents as well as their own. But this assumption can be eased by introducing
additional axioms as we demonstrate in Theorem 6. Our last assumption deals with the
relationship between the costs of different formulas. The fact that equivalent formulas
must have equal costs seems obvious. It is also plausible that Cost(A) must be equal
to Cost(¬A), since asking questions “Is A true?” and “Is ¬A true?” can be considered
as the same informational action. But these are the only constraints on the Cost func-
tion we imposed in this paper. It remains an open question how to deal with Boolean
connectives in the sense of their costs. As a future work, one of our aims is to deal
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with this aspect. For example, it looks quite natural to consider the following property:
cA + cB ≥ cA◦B , where ◦ is any Boolean connective.

As for the DELbc extension, it is natural to introduce additional dynamic modalities:
an operator [?GA]ψ which involves sharing resources among a group of agents, G and
an operator 〈?n

i 〉ϕ for existential quantification over updates (there is a propositional
formula, A, such that the cost of A is at most, n, and it is true that 〈?iA〉ϕ). This would
allow us to define a concept such as n-knowability, meaning that ϕ is knowable given
n resources. Finally, in future work, we plan to establish complexity results for the
satisfiability problem and investigate model-checking algorithms for our logics.
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