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Abstract. There have been a number of attempts to develop a for-
mal definition of causality that accords with our intuitions about what
constitutes a cause. Perhaps the best known is the “modified” defini-
tion of actual causality, HPm, due to Halpern. In this paper, we argue
that HPm gives counterintuitive results for some simple causal mod-
els. We propose Dynamic Causality (DC), an alternative semantics
for causal models that leads to an alternative definition of causes. DC
ascribes the same causes as HPm on the examples of causal models
widely discussed in the literature and ascribes intuitive causes for
the kinds of causal models we consider. Moreover, we show that the
complexity of determining a cause under the DC definition is lower
than for the HPm definition.

1 Introduction

Causal inference is central to artificial intelligence. For example,
it can be used to infer causal structure from data or to infer the
causal effect of a particular (hypothetical or actual) event or deci-
sion [22, 12]. Two kinds of causal inference can be distinguished.
The first is termed ‘type causality’, and is critical in machine learn-
ing and for prediction purposes. This kind of causality concerns gen-
eral statements such as ‘smoking causes lung cancer’, and can be
used to predict, e.g., the probability that someone who smokes gets
lung cancer. The second kind of inference is termed ‘actual causal-
ity’, and is essential in tracing and explaining the cause of a spe-
cific outcome, which in turn is essential for assigning responsibility
for the outcome to a specific component or decision of an AI sys-
tem [13, 14, 7, 20, 1, 26, 21]. This kind of inference can be used, for
example, to identify the cause of a train accident and to assign the
responsibility of the accident to specific decisions. In this paper, we
focus on actual causality.

There have been many attempts to define the notion of actual
causality and to characterize its corresponding inference system
[12, 15, 3]. A ‘naive’ notion of actual causality is but-for causal-
ity: event A is the cause of event B if A happened and afterwards B
happened, and if A did not happen, B would not have happened [11].
The problem with but-for causality is that sometimes there is some
event C that would have caused B even if A did not happen. A clas-
sic example concerns the death of a person (event B) who jumps
from a ten-story building to commit suicide (event C), but was shot
when passing the 9th floor on the way down, killing him instantly
(event A). Such considerations gave rise to the HPm definition that
considers a counterfactual state of affairs where A did not happen

but also C has the same status as in the actual situation, that is, it did
not affect B, and hence in this alternative state of affairs B did not
happen. We state the HPm definition formally below, but essentially
it boils down to holding some features of the world to their actual
values when they would have been affected by changing the value of
the hypothetical cause A.

We argue that the HPm definition of actual causality gives coun-
terintuitive results for some simple models. One example is the well-
known ‘Switches’ problem due to Hall [8], where a train approaches
a switch in the railroad tracks. An engineer can divert the train to the
left-hand track instead of the right. In both cases (with and without
the intervention of the engineer) the train arrives at its destination,
because the tracks reconverge up ahead. According to the HPm def-
inition of actual causality, one can infer that the engineer’s interven-
tion is the cause of the train arriving at its destination, which seems
counterintuitive; the train arrives at its destination regardless of what
the engineer does. This is because the HPm definition allows us to as-
sume, counterfactually, that the engineer did not intervene (the train
is not on the left-hand track) while keeping ‘the train is on the right-
hand track’ to its actual value which is ‘false’ (in the actual situation
the engineer does intervene such that the train is on the left track).
As in this case (‘the train is on the left track’ and ‘the train is on the
right track’ are both false) the train does not arrive at its destination,
the HPm definition concludes that the engineer is the cause of its ar-
rival. As we will see, the counterintuitive implications of the HPm

definition are not limited to this example.
In this paper we propose Dynamic Causality (DC), an alternative

semantics for causal models that leads to an alternative definition of
causes. DC considers the order in which variables are evaluated in a
causal model. It ascribes the same causes as HPm on the examples
of causal models widely discussed in the literature (including those
in [11]) and ascribes intuitive causes for the kinds of causal models
we consider. Moreover, we show that the complexity of determining
a cause under the DC definition is lower than for the HPm definition.

The remainder of this paper is structured as follows. In Section 2
we recall the formal definition of causal models and the modified def-
inition of actual causality HPm. In Section 3 we present some coun-
terexamples to the HPm definition. Finally, in Section 4 we propose
the dynamic interpretation of causal models, that gives rise to a new
definition of Dynamic Causality (DC). We demonstrate how the DC
definition deals with the counterexamples to the HPm definition and
prove that the complexity of verifying a cause under the DC defini-
tion is lower than for the HPm definition. Finally, we discuss how
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our approach is related to other attempts to define actual causation
proposed in recent years, e.g. [2], [4] and [3].

2 Preliminaries

In this section we briefly recall the necessary background on causal
models and the HPm definition of causality. The presentation below
essentially follows that in [9, 11].

2.1 Causal Models

The idea of describing causal models as a collection of structural
equations was introduced by Pearl [22]. In [10] Halpern provided ax-
iomatizations for different classes of causal models, and in [13, 14]
Halpern and Pearl developed formal definitions of cause and expla-
nation.

The Halpern and Pearl approach (hereafter HP) assumes that the
world is described in terms of variables and their values. Some vari-
ables may have a causal influence on others. This influence is mod-
elled by a set of modifiable structural equations. The variables are
split into two sets: the exogenous variables, whose values are deter-
mined by factors outside the model, and the endogenous variables,
whose values are ultimately determined by the exogenous variables.
The structural equations describe how the outcome is determined.
Formally, a causal model is defined as:

Definition 1 (Causal Model). A signature is a tuple S = (U ,V,R),
where U is a finite set of exogenous variables, V is a finite set of
endogenous variables, and R associates with every variable Y ∈
U ∪ V a finite nonempty set R(Y ) of possible values for Y , also
called range of Y . A causal model over a signature S is a tuple
M = (S,F), where F associates with every endogenous variable
X ∈ V a function FX such that FX maps ×Z∈(U∪V−{X})R(Z) to
R(X).

Intuitively, FX defines a structural equation that specifies how the
value of the endogenous variable X is determined by the values of all
other variables in (U∪V)−{X}. For example, in a causal model with
three variables X,Y and Z, the function FX(Y,Z) = Y +Z defines
the structural equation X = Y + Z, while FY (X,Z) = Z defines
the structural equation Y = Z, etc. The later equation demonstrates
that Y does not depend on X . Additionally, these equations can be
written with an ’iff’ notation, for example X = 1 iff min(Y, Z) = 0,
and X = 0 iff min(Y, Z) ≠ 0. For the case of binary variables it is
often more convenient to define structural equations using boolean
connectives, e.g. X = ¬(Y ∨X). So, by structural equation for any
endogenous variable X we understand the way of specifying how the
value of X is determined by the values of other variables1.

An assignment U⃗ = u⃗ of all exogenous variables is called context.2

We will slightly abuse the notation and use u⃗ to refer to the context
instead of U⃗ = u⃗.

The causal dependencies between variables can be visualised us-
ing a dependency graph, consisting of nodes representing variables
and directed edges representing causal dependencies. Though depen-
dency graphs do not provide any new information apart of those al-
ready contained in M they often serve as a good illustration of M.
In order to generate this graph for some causal model M, we need

1 The detailed overview can be found in [11].
2 We use the notation X⃗ = x⃗ to abbreviate (X1 = x1∧⋅ ⋅ ⋅∧Xk = xk), where
X⃗ ⊆ U ∪ V and ∣X⃗ ∣ = k. We also slightly abuse the notation and write
(X = x) ∈ (X⃗ = x⃗) meaning that (X = x) is a conjunct of (X⃗ = x⃗).

to check the dependencies between our variables. We say that Y de-
pends on X if there is some setting of all the variables other than X
and Y such that varying the value of X in that setting results in a
variation in the value of Y. More formally, for all X,Y ∈ U ∪ V , and
Z⃗ = (U ∪ V) − (X ∪ Y ), we say that Y depends on X if there is
some z⃗, such that FY (X = x, Z⃗ = z⃗) ≠ FY (X = x′, Z⃗ = z⃗), where
x ≠ x′. Additionally, note that all FX take as input the assignment of
all variables from (U ∪ V) −X . But we will slightly abuse the nota-
tion and allow expressions FX(Y⃗ = y⃗), where Y⃗ ⊊ (U ∪V)−X , i.e.
Y⃗ is a proper subset of (U ∪ V) −X . We say that FX(Y⃗ = y⃗) = x
if FX(Y⃗ = y⃗, Z⃗ = z⃗) = x for all z⃗, where (Y⃗ ∪ Z⃗) = (U ∪ V).
The choice of exogenous variables is usually trivial since they can
be considered as ’dummy’ variables enforcing the necessary values
of those endogenous variables that depend only on these exogenous
ones.

In this paper we restrict our attention to recursive models [11]
only. In such models, the dependency graph is acyclic.

Binary causal models are models M for which R(Y ) contains
only two values for each Y ∈ U ∪ V .

To illustrate the notion of a causal model, consider the following
simple example, initially due to Lewis [19] which has been influential
in the development of actual causality.

Example 1 (Rock-throwing example). Suzy and Billy both pick up
rocks and throw them at a bottle (encoded as ST=1 and BT=1 respec-
tively). Suzy’s rock gets there first, shattering the bottle. We denote
the fact that Suzy’s rock hits the bottle as SH=1. Similarly, BH=0 de-
notes the fact that Billy’s rock does not hit the bottle. Finally, BS=1
means ’the bottle shatters’. We also know that because both throws
are perfectly accurate, Billy’s would have shattered the bottle had it
not been preempted by Suzy’s throw. So, our endogenous variables
V are {ST,BT,SH,BH,BS}. Structural equations are defined as
follows:

● SH=ST;
● BH=(BT∧¬SH);
● BS=(SH∨BH).

Our exogenous variables U = {UST, UBT} determine the values of
ST and BT variables respectively. For simplicity, we omit exogenous
variables from the dependency graph.

Note that structural equations contain the information about any
counterfactual scenario, not only about the actual one. For example,
we know that if Suzy had thrown the rock, but by some reason her
rock would not have hit the bottle, the bottle would have been still
shattered, because in this scenario Billy’s rock would have hit the
bottle. So, causal models provide us a powerful tool for dealing with
counterfactuals, even when alternative situations violate the causal
structure of the actual situation, in this example, when they violate
the equation SH=1 iff ST=1. In such cases, we can ’break’ certain
causal relations to explore causal dependencies between other vari-
ables. The dependency graph for Example 1 is presented in Figure 1.

BS

SH

BH

ST

BT

Figure 1. A dependency graph for the Rock-throwing example.

M. Gladyshev et al. / Dynamic Causality868



The main feature of causal models is their ability to express facts
about any counterfactual scenario. As we mentioned before, we can
say that if Suzy did not throw the rock, her rock would not hit the
bottle, but the bottle would still be shattered. We can express it with
a formula [ST ← 0](SH=0∧BS=1). The operator [X⃗ ← x⃗] is called
intervention. This intervention results in a new casual model denoted
MX⃗←x⃗. Informally, MX⃗←x⃗ is model M in which functions FX for
any X ∈ X⃗ are replaced with a constant function F X⃗←x⃗

X , which al-
ways returns X , where X = x ∈ X⃗ ← x⃗ and the remaining functions
remain unchanged. Note that an intervention X⃗ ← x⃗ can be seen as a
set of variable assignments {X1 ← x1, . . . ,Xk ← xk} and we write
X = x ∈ X⃗ ← x⃗ if X ← x appears in X⃗ ← x⃗.

Definition 2 (Updated model). Given a causal model M = (S,F)
and assignment X⃗ = x⃗ of any subset of V , we call MX⃗←x⃗ =

(S,F X⃗←x⃗) an updated model, where for all Y , z⃗

F X⃗←x⃗
Y (z⃗) =

⎧⎪⎪
⎨
⎪⎪⎩

FY (z⃗), if Y ∉ X⃗

x′, otherwise, where (Y = x′) ∈ X⃗ = x⃗

Now we can formally define the syntax of the basic causal lan-
guage, that allows us to reason about basic causal formulas of the
form (X = x), their boolean combinations and interventions [Y⃗ ←
y⃗]ϕ.

Definition 3 (Syntax). Given a signature S = (U ,V,R), a prim-
itive event is a formula of the form X = x, for X ∈ V and
x ∈ R(X). A causal formula (over S) is one of the form [Y1 ←
y1, . . . , Yk ← yk]ϕ, where ϕ is a Boolean combination of primitive
events, {Y1, . . . , Yk} ⊆ V , yi ∈ R(Yi).

Language for S = (U ,V,R) consists of all Boolean combinations
of causal formulas, where the variables in the formulas are taken
from V and the sets of possible values of these variables are deter-
mined by R.

The well-formed formulas of our language are only those con-
structed according to the above mentioned rules. It remains to define
the truth relation ⊧ for causal formulas with respect to causal models.
We call a pair (M, u⃗) a causal setting for a model M and context
u⃗. Given a causal setting (M, u⃗) and a causal formula ϕ we inter-
pret (M, u⃗) ⊧ ϕ notation as ’formula ϕ is true at (M, u⃗)’. Finally,
let Sol(u⃗) be a set of all (X = x), such that X has a value x in the
unique solution of equations in M for a context u⃗. Now we are ready
to define the semantics of causal formulas.

Definition 4 (Semantics). For a causal model M = (S,F), a con-
text u⃗ and a causal formula ϕ we define the relation ⊧ inductively as
follows:
(M, u⃗) ⊧ (X = x) iff (X = x) ∈ Sol(u⃗);
(M, u⃗) ⊧ ¬ϕ iff (M, u⃗) ⊭ ϕ;
(M, u⃗) ⊧ (ϕ ∧ψ) iff (M, u⃗) ⊧ ϕ and (M, u⃗) ⊧ ψ;
(M, u⃗) ⊧ [Y⃗ ← y⃗]ϕ iff (MY⃗←y⃗, u⃗) ⊧ ϕ.

2.2 The HPm Definition of Cause

Almost all existing approaches to causality are essentially counter-
factual theories of causation [18]. And the most common of them
and widely used in legal practice is so-called but-for causality. Ac-
cording to this approach, A is a cause of B if, but for A, B would not
have happened. In other words, but-for definition says that A caused
B iff A and B both occurred and had A not occurred, B would not
have occurred.

Definition 5 (But-for cause). We say that X⃗ = x⃗ is a but-for cause
of ϕ in (M, u⃗) if the following three conditions hold:
BC1. (M, u⃗) ⊧ (X⃗ = x⃗) and (M, u⃗) ⊧ ϕ
BC2. (M, u⃗) ⊧ [X⃗ ← x⃗′]¬ϕ
BC3. X⃗ is minimal: no proper subset of X⃗ satisfies BC2.

BC1 condition ensures that both X⃗ = x⃗ and ϕ hold in the ac-
tual context. BC2 is a but-for condition saying that if X⃗ = x⃗ had
not been true, ϕ would have been false. And BC3 guarantees that
only essential elements of the conjunction X⃗ = x⃗ are considered part
of a cause while inessential variables are pruned. This definition in
fact looks quite natural, but with the development of causal theory it
became clear that Definition 5 cannot resist the pressure of various
counterexamples. In many situations we intuitively agree that X⃗ = x⃗
is a cause of ϕ, but X⃗ = x⃗ and ϕ do not satisfy Definition 5. We can
observe this problem in Example 1. If both Suzy and Billy throw the
rock, then we know that it was exactly Suzy’s rock hit the bottle. So,
it is very natural to say that ST=1 is a cause of BS=1 in this example
since it was exactly ST=1 that lead to SH=1 that made BS=1 true.
But ST=1 fails the but-for test: [ST ← 0]¬(BS = 1) does not hold
in (M, u⃗), since the bottle is shattered even if Suzy does not throw
the rock.

The most famous and commonly used solution called HP defini-
tion was proposed by Judea Pearl and Joseph Halpern [22, 13, 11].
This approach is usually called actual causality. Its final version is
introduced in [9] and is called HPm (for modified) definition.

Definition 6 (HPm cause3). We say that X⃗ = x⃗ is an actual cause of
ϕ in (M, u⃗) if the following three conditions hold:
AC1. (M, u⃗) ⊧ (X⃗ = x⃗) and (M, u⃗) ⊧ ϕ
AC2m. There is a set W⃗ of variables in V , such that if (M, u⃗) ⊧
W⃗ = w⃗∗, then

(M, u⃗) ⊧ [X⃗ ← x⃗′, W⃗ ← w⃗∗]¬ϕ

AC3. X⃗ is minimal: no proper subset of X⃗ satisfies AC2m.

It is easy to see that AC1 and AC3 conditions are identical to those
from Definition 5. The main difference can be observed in AC2m.
Intuitively, it says that X⃗ = x⃗ is a cause of ϕ if we can find some
subset W⃗ of endogenous variables, such that fixing the values of all
variables in W⃗ to their original values in the actual context would
make X⃗ = x⃗ a but-for cause of ϕ. To illustrate this intuition, con-
sider Example 1 once again. We want to check if HPm definition
determines Suzy as a cause of bottle shattering, on which but-for
definition fails. Conditions AC1 and AC3 trivially hold. So, we need
to find W⃗ , such that [ST ← 0, W⃗ ← w⃗∗]¬(BS=1) to satisfy AC2m.
And BH is the candidate we need. We know that in the actual context
u⃗, BH=0 holds. So, fixing it to original values results in a formula
[ST ← 0,BH ← 0]¬(BS=1) and it is easy to check that this formula
holds in (M, u⃗). So, ST=1 is a cause of BS=1 in our settings (M, u⃗)
according to HPm definition. The Rock-throwing example is the an
illustration of so-called Late Preemption.

3 In fact, there are three versions of HP definition, all with the same basic
structure. In this paper we discuss HPm [11], which is the latest and sim-
plest version. The other versions are the HPo (original) and HPu (updated)
definitions (a detailed overview of all definitions can be found in [11]). Here
we mention only that HPm gives a more intuitive ascription of causes than
HPo and HPu in some cases. For example, in situations where so-called
overdetermination occurs. Consider a voting scenario with 11 voters and
simple majority rule. Assume that Suzy wins 11-0. In this case both HPo

and HPu claim each of the voters for Suzy to be a cause, while HPm picks
any subset of 6 voters.
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3 Problems With The HPm Definition

It can be fairly said that HPm outperforms but-for approach in a
sense that this definition provides us more natural solutions. In many
cases it is easier to agree that HPm solutions are what we would call
a cause rather than but-for solutions. But this approach also has some
drawbacks. To illustrate it consider the following example [8, 4].

Example 2 (Switches). An engineer is standing by a switch in the
railroad tracks. A train approaches in the distance. She flips the
switch, so that the train travels down the left-hand track (LT ), in-
stead of the right (RT ). Since the tracks reconverge up ahead, the
train arrives at its destination (Dest) all the same.

The causal dependencies are represented by the following struc-
tural equations:

● Dest ∶= LT ∨RT ;
● LT ∶= Switches;
● RT ∶= ¬Switches.

RT

Switches

Dest

LT

Figure 2. Dependency graphs for Example 2.

It seems reasonable that flipping the switch is not a cause for the
train’s arrival in this example, as the train would have arrived at its
destination whether the switch was flipped or not. But HPm defini-
tion violates this intuition. It is easy to check that Switches = 1 is an
HPm cause of Dest = 1: take W⃗ = {RT}, so (M, u⃗) ⊧ [Switches ←
0,RT ← 0]Dest = 0, so (AC2m) is satisfied. AC1 and AC3 are triv-
ially satisfied.

Another counterexample for HPm definition is a kind of causal
models, in which an outcome ϕ holds no matter how we manipulate
the other variables.

Example 3. A major AI conference has two phases of the reviewing
process. In the first phase (P1), papers are judged by the suitability
of their abstracts (Ua). A paper whose abstract is good (Ua = 1)
passes the first phase (P1 = 1) and reaches the second phase (P2),
where it is reviewed based on its content (Uc). Then it gets negative
reviews (P2 = 2) if the content is not good (Uc = 0), and positive
reviews (P2 = 1) if the content is good (Uc = 1). If a paper does
not pass the first stage (P1 = 2) it doesn’t get any reviews in the sec-
ond phase (P2 = 0). Finally, the conference chair decides to accept
(CD = 1) the papers that reach the second phase and receive pos-
itive reviews, and to reject (CD = 0) other papers. In this example
variables P1 and CD are binary, and P2 has three values: P1 = 1
means that review is positive and P1 = 2 means that it is negative.
Similarly for P2, but additionally there is an option that second re-
view is not provided at all (P2=0). This situation is captured by the
following structural equations:

● P1=1 if Ua=1; P1=2 if Ua=0;

● P2=0 if P1=2; P2=1 if (P1=1∧Uc=1);
P2=2 if (P1=1∧ Uc=0);

● CD=1 if P1=1 and P2=1; CD=0 otherwise.

CD

P1

P2

Ua

Uc

Figure 3. Dependency graph for Example 3.

Consider a submission with bad abstract and bad content, which
determines the actual context u⃗: (Ua = 0, Uc = 0). The paper does
not pass the first phase (P1 = 2), doesn’t get any reviews in the
second phase (P2 = 0) and gets rejected (CD = 0). It seems natural
to claim that P1 = 2 (not passing the first phase) is the cause of
rejection (CD = 0). But both but-for and HPm definitions claim
that P1 = 2 and P2 = 0 together are a cause of CD = 0, since
[P1 ← 1, P2 ← 1]CD = 1 holds in (M, u⃗) satisfying BC2 (and
AC2m). In is also easy to check that {P1 = 1, P2 = 1} is minimal:
no proper subset of it satisfies BC2 (and AC2m).

4 Dynamic Causal Models

In this section we present dynamic causal models or, more precisely,
the dynamic interpretation of causal models. The dynamic interpre-
tation is based on the idea that not only the solution of structural
equations must be taken into account, but also how the solution is
computed based on the dependencies among variables. Below, we
show how the order in which values can be assigned to variables in
V given (M, u⃗) may be used to determine actual causality.

Recall that in Example 1, in the actual context, the event ‘Bottle
shatters’ depends on the event ‘Suzy’s rock hits the bottle’, which in
turn depends on ‘Suzy throws the rock’. And since events in causal
models are represented by the assignment of values to variables, we
want to understand in which order values must be assigned to the cor-
responding variables. For example, it is clear from the causal struc-
ture of the model that the value of BS cannot be computed before the
value of SH is known (given that BH = 0 in the actual context) and
SH cannot be computed until the value of ST is available. This il-
lustrates that causal models already contain all the information about
the order in which values can be assigned to variables; we only need
to extract and use this information in the definition of causality. In
what follows, we specify the order in which value can be assigned to
variables.

Recall that F is a finite set of FX for X ∈ V . Let Y⃗ = y⃗ denote
an assignment of a (possibly empty) set of endogenous variables in
V . Given (M, u⃗), an assignment Y⃗ = y⃗ substitutes u⃗ and Y⃗ = y⃗ to
FX for all X in M and determines the values of a set of variables
Y⃗ ′ = y⃗′. Note that (u⃗, Y⃗ = y⃗) is not necessarily a complete assign-
ment for U ∪ V . By a complete assignment we mean an assignment
where all variables are assigned a value. The only variables X that
will be assigned a value given (u⃗, Y⃗ = y⃗) are those for which FX

returns the same value on any assignment extending (u⃗, Y⃗ = y⃗) to
a complete assignment to all variables apart from X . We say that
Y⃗ = y⃗ is sufficient for X = x in (M, u⃗) if FX(u⃗, Y⃗ = y⃗) = x for all
complete assignments [3]. Finally, we stipulate that the computation
of assignments is performed in a step-wise manner. Given (M, u⃗),
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we start with an an empty assignment Y⃗ = y⃗ and compute the as-
signment Y⃗ ′ = y⃗′ of variables whose values can be determined given
(only) u⃗. (Note that Y⃗ ′ is guaranteed to be non-empty by the recur-
siveness of M.) We then compute the assignment Y⃗ ′′ = y⃗′′ of vari-
ables whose values can be determined, given the assignment Y⃗ ′ = y⃗′.
We repeat this process until no new assignments can be made, i.e.,
until the assignment is sufficient for all X ∈ V .

As an example, consider the number of steps necessary to achieve
a sufficient assignment for all variables in the Rock-throwing ex-
ample. At step 0 only the context u⃗ is known, and the only vari-
ables whose value can be determined are (ST = 1,BT = 1).
Given the assignment (ST = 1,BT = 1), at step 1, we can de-
termine the value of the variable SH = 1. Given the assignment
(ST = 1,BT = 1, SH = 1), at step 2 we can determine the value of
the variables BH = 0 and BS = 1. This is because SH = 1 is enough
to compute BS = 1, whatever the value of BH . So, the computation
of a sufficient assignment for all variables in this example requires
three steps (see Figure 4).

BS

SH

BH

1

ST

1

BT

n=1

BS

1 SH

BH

1

ST

1

BT

n=2

1

BS

1 SH

0 BH

1

ST

1

BT

n=3

Figure 4. Dynamic interpretation of the Rock-throwing example. n
denotes number of calls to F , i.e. step of the computation.

More formally, assume that we are given a causal model M =
(S,F). A computation over (M, u⃗), denoted by C, is a function
mapping N to assignments Y⃗ × R(Y⃗ ), where Y⃗ ∈ 2U∪V , which is
constructed as follows. C(0) = {U1 = u1, . . . , Uk = uk}, where
(U1 = u1, . . . , Uk = uk) is a context u⃗. For all n > 0 we re-
quire that: (1) the context u⃗ is contained in C(n), i.e. U1 = u1 ∈
C(n), . . . , Uk = uk ∈ C(n); and (2) for all X ∈ V,X = x ∈ C(n)
iff FX(C(n − 1)) = x. Since C(n − 1) is not necessarily a com-
plete assignment of all variables, FX(C(n − 1)) returns some value
x only if FX(C(n − 1), Y⃗ = y⃗′) = x for all Y⃗ = y⃗′ that complete
C(n− 1) to all variables. This procedure basically describes how the
computation over (M, u⃗) must be performed in a step-wise manner.
Note also that since M is recursive, C behaves as follows: (1) once
any X = x appears at C(i), it remains in any C(j) for j > i and (2)
there always exists n′, such that all variables appear in C(n′) and
then C(n′′) = C(n′) for n′′ > n′.

The introduction of computations requires a new definition of in-
terventions. Recall that in HPm, an intervention FX←x is the result
of replacing FX with a constant function and leaving the remaining
functions unchanged. However, this approach is inconsistent with a
dynamic interpretation of causal models. Replacing FX with a con-
stant function breaks the order of computation, because this constant
function will always return the same value x for any input and thus
X will be already defined at C(1), independently of when X was
defined in the original computation. Instead, we define interventions

with respect to a computation C as follows.
Given (M, u⃗), let CY⃗←y⃗ be a computation for an intervention

Y⃗ ← y⃗, such that CY⃗←y⃗(0) = u⃗ and for all n > 0 if X ∉ Y⃗ , then
X = x ∈ CY⃗←y⃗(n) iff FX(CY⃗←y⃗(n − 1)) = x, and if Y ∈ Y⃗ , then
Y = y ∈ CY⃗←y⃗(n) iff ∃y′ ∈ R(Y ) such that FY (CY⃗←y⃗(n−1)) = y′

and Y = y ∈ Y⃗ ← y⃗. In other words, at each step n of the computa-
tion we check if some Xi in the resulting assignment appears in Y⃗ ,
and if yes, we replace Xi = x with Xi = x′ ∈ Y⃗ ← y⃗ in CY⃗←y⃗(n).
Otherwise, if Xi does not occur in Y⃗ , we add Xi = x to CY⃗←y⃗(n),
where FX(CY⃗←y⃗(n − 1)) = x.

Finally, we give a revised definition of semantics of causal formu-
las for dynamic causal models. This definition is similar to the HPm

definition (Definition 4). The main difference is that it is no longer
sufficient to evaluate the truth of formulas with respect to causal set-
tings (M, u⃗). Instead we do it with respect to causal states of the
form (M, u⃗[n]).

Definition 7 (Semantics). Given a causal model M, a context u⃗, a
natural number n and a causal formula ϕ we define the relation ⊧
inductively as follows:
(M, u⃗[n]) ⊧ X = x iff X = x ∈ C(n),
(M, u⃗[n]) ⊧ ¬ϕ iff ϕ can be evaluated to false in C(n),
(M, u⃗[n]) ⊧ (ϕ ∧ψ) iff (M, u⃗[n]) ⊧ ϕ and (M, u⃗[n]) ⊧ ψ,
(M, u⃗[n]) ⊧ [Y⃗ ← y⃗]ϕ iff ϕ can be evaluated to true in CY⃗←y⃗(n).

Note that in the truth definition ϕ does not necessarily have a truth
value at n.

In addition, we use (M, u⃗) ⊧ ϕ as an abbreviation for
(M, u⃗[∞]) ⊧ ϕ. For this case, the relation ⊧ for the dynamic in-
terpretation corresponds to that of Definition 4.

4.1 Dynamic Causality

Now that all technical details have been dealt with, we can present
the dynamic interpretation of causality. Before giving the formal def-
inition, we give a motivating example. Recall why Suzy fails the but-
for test in the Rock-throwing example. If we think in terms of static
causal models, then it is clear that [ST ← 0](BS = 1) holds in the
actual context (M, u⃗). The choice of the value for ST changes noth-
ing in terms of the resulting value of BS, and so ST=1 is not a but-for
cause of BS=1. We now consider the intervention (MST←0, u⃗) under
the dynamic interpretation.

BS
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BH

0

ST

1

BT

n=1

BS

0 SH

BH

0

ST

1

BT

n=2

BS

0 SH

1 BH

0

ST

1

BT

n=3 1

BS

0 SH

1 BH

0

ST

1

BT

n=4

Figure 5. Computation for (MST←0, u⃗).
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In this computation SH and BH are again computed on steps 2
and 3 respectively. However, while previously we could calculate BS
given only SH (if SH=1 holds on the previous step, then BS=1 be-
comes defined at the next step), now we cannot do it, since SH=0
in the new computation. We have to ‘wait’ one more step to get the
value of BH and then compute BS. Note that, although the interven-
tion on ST does not prevent BS = 1 from occurring in (M, u⃗),
ST ← 0 ‘pushes’ the moment of computation of BS to a later step.
In other words, ST ← 0 cannot prevent BS = 1, but it does prevent
BS = 1 from being computed at the step (step 3) at which it would
have been computed in the actual context.

Now we are ready to formalize these ideas and provide a new def-
inition of actual cause with respect to a computation over a causal
model. We use the notation nϕ to denote the first step of the calcula-
tion for (M, u⃗) when ϕ becomes true; otherwise nϕ = ∞.

Definition 8 (Dynamic Cause). X⃗ = x⃗ is a DC cause of ϕ in (M, u⃗)
if the following three conditions hold:
DC1. (M, u⃗) ⊧ (X⃗ = x⃗) and (M, u⃗) ⊧ ϕ
DC2. (M, u⃗[nϕ]) ⊭ [X⃗ ← x⃗′]ϕ
DC3. X⃗ is minimal: no proper subset of X⃗ satisfies DC2

Conditions DC1 and DC3 are the same as the corresponding con-
ditions in the But-for and HPm definitions. Condition DC2 is essen-
tially a but-for condition, but with respect to a specific step of the
computation. It says that X⃗ = x⃗ satisfies the (dynamic) but-for con-
dition if [X⃗ ← x⃗′] would prevent ϕ from being evaluated to true at
the step of computation at which it would have become true in the
actual context.

DC ascribes the same causes as HPm on the examples of causal
models widely discussed in the literature. However DC and HPm

ascribe different causes in Examples 2 and 3 discussed above.

Proposition 1. An HPm cause is not a DC cause.

Proof. Recall Example 2. In Example 2, HPm picks Switches = 1
as a cause of Dest = 1: take W⃗ = {RT}. Fixing W⃗ to the
original value and intervening on Switches will result in Dest =
0. So, (M, u⃗) ⊧ [Switches ← 0,RT ← 0]Dest = 0 holds
and, thus, (AC2m) is satisfied. However, according to the DC
definition, Switches = 1 is not a cause of Dest = 1, since
(M, u⃗[n(Dest=1)]) ⊧ [Switches ← 0]Dest = 1 holds, so DC2 is
not satisfied.

Proposition 2. A DC cause is not an HPm cause.

Proof. Recall Example 3. Both but-for and HPm pick (P1=2∧P2=0)
as a cause of CD=0, but it is not a cause for DC. DC picks only
P1=2. It is trivial to check conditions DC1 and DC3. For DC2, in the
original context CD=0 becomes true at step 2 of the computation, but
in the computation for (MP1←1, u⃗) it becomes defined only at step
3. So, (M, u⃗[2]) ⊭ [P1 ← 1](CD = 0) holds satisfying DC2.

4.2 Complexity

Finally, we briefly discuss complexity results for the DC definition,
and compare them to the HPm definition. Given (Mrec, u⃗, X⃗, x⃗, ϕ)
we want to check if X⃗ = x⃗ is a cause of ϕ in (M, u⃗) according to
DC.

Theorem 1. The complexity of determining whether X⃗ = x⃗ is a
cause of ϕ in (Mrec, u⃗) under DC is:

(a) DP -complete in the general case;
(b) co-NP-complete for binary causal models; and
(c) in PTIME if ∣X⃗ ∣ = 1.

Proof. (a) The proof will appear in the extended version of the paper.
(b) It is easy to see that the problem is in co-NP. Conditions DC1 and
DC2 can be checked in polynomial time. We need the assumption of
binary variables to guarantee there is a unique x⃗′ of values different
from x⃗; otherwise we would need to check all possible x⃗′. Checking
DC3 is in co-NP because we can guess a counterexample (a strict
subset of X⃗ which satisfies DC2).

For co-NP hardness, consider the following reduction from the
minimal model problem: given a propositional formula ϕ in con-
junctive normal form and a propositional assignment α, is α a min-
imal model of ϕ? Minimality is defined with respect to the point-
wise order on assignments, where 0 ≤ 1. In other words, an assign-
ment is minimal if any assignment with strictly fewer 1s does not
make the formula true. This problem was introduced and proved
co-NP complete in [6]. Let ϕ be a propositional formula in con-
junctive normal form over propositional variables Y1, . . . , Yk, and α
an assignment of values to Y1, . . . , Yk. Consider a causal model M
with exogeneous variable U and endogeneous variables Y1, . . . , Yk,
where the structural equations are Yi = U for i ∈ {1, . . . , k}. Let
{X1, . . . ,Xm} ⊆ {Y1, . . . , Yk} be the set variables assigned 1 by α.
Without loss of generality, m > 0, since an assignment of all 0s is
trivially minimal. We claim that X⃗ = 0⃗ is a cause of ¬ϕ in (M, 0⃗) if,
and only if, α is the minimal model of ϕ.

For the left to right direction: suppose that DC1 – DC3 hold:
DC1. (M,0) ⊧ (X⃗ = 0⃗) and (M,0) ⊧ ¬ϕ
DC2. (M,0[nϕ]) ⊭ [X⃗ ← 1⃗]¬ϕ
DC3. X⃗ is minimal: no proper subset of X⃗ satisfies DC2 This
entails that setting X⃗ to 1⃗ is sufficient to prevent ϕ from being false
at nϕ, and X⃗ is a minimal such set, that is, α is a minimal model of
ϕ.

For the right to left direction, suppose α is a minimal model of ϕ.
Then (by our assumption that α assigns 1 to at least one variable),
an assignment of all 0s does not satisfy ϕ, so DC1 holds. Since it is
a satisfying assignment, assigning 1s to the variables X⃗ prevents ϕ
from being evaluated to false at nϕ. And from minimality of α, DC3
holds.

(c) It is clear that checking if DC1 holds can be done in polyno-
mial time and DC3 holds trivially. For DC2 it is sufficient to check
∣R(X)∣ − 1 candidates for x′ and each candidate can be checked in
polynomial time.

For the HPm definition (a) and (b) are DP -complete [11] (the
proof of DP -hardness uses a binary model). The problem for unary
causes (c) under the HPm definition is NP-complete [11]. Hence the
complexity of determining whether something is a cause for binary
causal models and for unary causes is lower under DC than under the
HPm definition, and for unary causes, tractable.

5 Discussion and Future Work

The dynamic interpretation of causal models provides a new perspec-
tive on reasoning about causality. The DC interpretation can be seen
as a modification of the satisfiability relation ⊧ for causal formulas.
The definition of causal models and the syntax are unchanged, which
means that many results from static causal models can be applied di-
rectly to dynamic ones. Secondly, dynamic causal models give rise
to a natural definition of cause, which improves HPm by identifying
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intuitive causes in some situations and behaving better than HPm in
terms of computational complexity, making the problem tractable in
the case of single variables, which covers many interesting situations.

In the discussion and comparisons above, we focused on HPm, as
HP-style definitions are the most common in the field, and it could be
argued that HPm represents the ‘state of the art’ in such approaches.
However, HPm is not the only candidate for the definition of ac-
tual causation. Various alternative definitions have recently been pro-
posed. In particular, Beckers and Vennekens [4] (hereafter BV) in-
troduce several principles, such that counterfactual dependence and
production, and propose a new definition of actual causation incorpo-
rating these principles. Another feature of their approach is that it ex-
tends a causal setting (M, u⃗) with extra temporal information, called
timing τ . Timing is a function that maps literals of the form (X = x)
to natural numbers, and represents the temporal order in which events
happen in the actual context. That is, τ(X = x) represents the mo-
ment at which the event X = x happens. Causality statements are
expressed relative to a timing as tuples of the form (M, u⃗, τ). While
this is superficially similar to our notation (M, u⃗[n]) (especially
given the similarity between temporal moment τ(X = x) at which
X = x happens and the first moment n of the computation C(n)
at which X can be assigned with value x), there are significant dif-
ferences between BV and DC. Firstly, [4] assumes that the timing
τ is given outside the model, but agrees with dependencies between
variables (ensuring that the cause does not happen after effect in the
timing). We provide a way to generate a computation C using only
the information given in (M, u⃗). DC is therefore applicable when
no additional temporal information is available, which is not the case
for BV. Secondly, we do not claim that the order of computation de-
scribed by C represents any temporal information about the order in
which events occurred in the actual context. Clearly, the same causal
setting (M, u⃗) always generates the same computation C, but there
may be multiple valid timings τ1, . . . , τk over (M, u⃗), such that the
BV definition picks different causes for different timings. However, if
the order of variable assignments in the computation C is interpreted
as a timing τ , it is one of the valid temporal orderings according to
[4]. We believe that our approach provides a simple and elegant defi-
nition of a cause compared to both HPm and BV, and remains appli-
cable when only a model M and a context u⃗ are given. Additionally,
we show that the problem of verifying a cause is tractable for DC for
the important class of unary causes, while [4] do not consider issues
of complexity.

Another recently proposed definition of actual cause is the CNESS
definition [3]. CNESS can be seen as a compromise between the BV
definition and Wright’s Necessary Element of a Sufficient Set (NESS)
[25] definition. The NESS definition states that C = c NESS-causes
E = e w.r.t. (M, u⃗) if there exists a chain of direct NESS causes
from C = c to E = e. C = c is a direct NESS-cause of E = e in
(M, u⃗) if there exists a witness W⃗ = w⃗ so that: (1) (M, u⃗) ⊧ C =
c∧ W⃗ = w⃗; (2) {C = c, W⃗ = w⃗} is sufficient for E = e; and (3) W⃗ =
w⃗ is not sufficient for E = e. Recall that X⃗ = x⃗ is sufficient for Y = y
in (M, u⃗) if FY (u⃗, X⃗ = x⃗) = y. The BV and CNESS definitions of
cause are formulated in terms of NESS-causes as follows. C = c BV-
causes E = e in (M, u⃗) if C = c NESS-causes E = e in (M, u⃗)
and there exists a c′ ∈ R(C) such that C = c′ does not NESS-cause
E = e in (MC←c′ , u⃗). C = c CNESS-causes E = e in (M, u⃗) if
C = c NESS-causes E = e along some path p and there exists a
c′ ∈ R(C) such that C = c′ does not NESS-cause E = e along any
subpath p′ of p in (MC←c′ , u⃗). Where ‘NESS-causes along some
path’ means that the values of the variables in p form a chain of
direct NESS-causes from C = c to E = e (see [3] for details). Note

that, similarly to HP-style definitions, NESS uses the witness {W⃗ =
w⃗}. This increases the complexity of both BV and CNESS, as they
use the notion of a direct NESS-cause. As noted above, [3] does not
provide complexity results. However, since a NESS-cause requires
checking exponentially many candidates for a witness W⃗ = w⃗ to
verify if C = c is a cause of E = e, our conjecture is that the problem
of verifying NESS, BV or CNESS is at least NP-hard. In contrast,
for DC this problem is in PTIME for single variables C and E.

NESS, BV and CNESS are similar in a sense that they are all based
on the idea of checking chains of direct NESS-causes, while DC uses
the idea of performing a step-by-step computation. However the idea
of checking causal chains between a cause and effect can be com-
pared to the idea of checking if the change in cause affects the mo-
ment of computation on which the effect can be computed. Another
difference is that both BV and CNESS verify two conditions: (1)
that C = c causes E = e in (M, u⃗) and (2) C = c′ does not cause
E = e in (MC←c′ , u⃗). We believe that this feature is used to deal
with ‘Switches’-style models (see Example 2). As DC does not pick
Switches = 1 as a cause of Dest = 1 in this type of model, so sec-
ond conditions seems to be redundant in our approach. However, it
is an open question whether these definitions agree on all examples
or not, so a detailed comparison of DC with NESS, BV and CNESS
is a promising direction for future work.

An alternative attempt to define NESS-style definition was made
by Bochman in [5]. Another recent paper [24] proposes an actual
cause definition for action languages which is also based on Wright’s
NESS test. There are also recent papers studying actual causality in
situation calculus semantics [16, 2, 17], but as they use a significantly
different formalism than DC, we leave a detailed comparison with
these definitions for future work.

We conclude by briefly outlining some directions for future work
that build on dynamic causal models. Firstly, in this paper we pre-
sented only example-based arguments in favour of DC, while there
have been some recent proposals to define general principles of ac-
tual causation [4]. We believe that the study of this general principles
is a priority direction for future work.

Another important direction is application of the proposed seman-
tics to non-recursive models. For static models non-recursiveness
means that the set of structural equations can have no (or multiple)
solutions. One way to deal with this problem is to adapt the idea pro-
posed in [11] and to take the truth of a primitive events X = x to
be relative not just to a context, but to a complete assignment: i.e.,
a complete description (u⃗, v⃗) of the values of both the exogenous
and the endogenous variables. Formulas are evaluated with respect
to tuples (M, u⃗, v⃗[n]). Once the values of (u⃗, v⃗) are assigned, a
computation C is unique, since every FX(u⃗, v⃗) will always return a
value for X and this value will be unique. Then, even if a model is
not recursive, i.e., some variables will change their values during the
computation, we can still deal with it in a straightforward way. For
some models, the computation C may never terminate, i.e., computa-
tion results in an infinite loop. Our proposed semantics can be used
to reason about such models in the same way as discussed here. The
only difference for this case is that the notation (M, u⃗) abbreviating
(M, u⃗[∞]) is no longer applicable: we always need to refer to the
exact step of the computation to evaluate the truth of our formulas.
Alternative way to deal with non-recursive models are so-called gen-
eralized structural equation models (GSEMs) [15]. But the dynamic
interpretation of GSEMs remains an open problem.

Dynamic causal models can also be used to deal with a temporal
dimension embedded in a causal model, e.g. time-indexed variables
(see [22, 13, 4]) and causal reasoning in time series [23].
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Systems, eds., Reyhan Aydoğan, Natalia Criado, Jérôme Lang, Vic-
tor Sanchez-Anguix, and Marc Serramia, pp. 243–259, Cham, (2023).
Springer International Publishing.

[25] Richard W. Wright, ‘The NESS account of natural causation: A re-
sponse to criticisms’, in Critical Essays on "Causation and Respon-
sibility", eds., Benedikt Kahmen and Markus Stepanians, pp. 13–66,
Berlin, Boston, (2013). De Gruyter.

[26] Vahid Yazdanpanah, Mehdi Dastani, Wojciech Jamroga, Natasha

Alechina, and Brian Logan, ‘Strategic responsibility under imper-
fect information’, in Proceedings of the 18th International Confer-
ence on Autonomous Agents and MultiAgent Systems, AAMAS ’19,
p. 592–600, Richland, SC, (2019). International Foundation for Au-
tonomous Agents and Multiagent Systems.

M. Gladyshev et al. / Dynamic Causality874


